Mh4718 Worksheet 7

1. Let $P(x)=x^{5}-6 x^{4}+8 x^{3}+8 x^{2}+4 x-40$.

Let $Q(x)$ be the unique polynomial such that

$$
P(x)=Q(x)(x-3)+P(3)
$$

Use Horner's method to determine $P(3)$ and $Q(x)$.
By differentiating the equation $P(x)=Q(x)(x-3)+P(3)$ show that

$$
P^{\prime}(3)=Q(3)
$$

2. Let $P(x)=x^{5}-6 x^{4}+8 x^{3}+8 x^{2}+4 x-40$.

Write a C++ program which uses Horner's method to determine $P(3)$. Bring your program to the next lab session on a USB key or by email.
3. Determine the Taylor polynomial of degree 10 around 0 for $\cos (x)$.
4. Determine the Taylor polynomial of degree 6 around 0 for the function $(1+x)^{\frac{3}{2}}$.
5. (i) Write a C++ program which defines a function which returns the value of the Taylor polynomial of degree 20 around 0 for the function e^{x}. Get the program to evaluate this polynomial in the "natural" way. Get your program to compare the value of this polynomial with the library function $\exp (x)$ for different values of x.
(ii) Do the same for the function $\cos (x)$.
6. (i) Write a $\mathrm{C}++$ program which defines a function which returns the value of the Taylor polynomial of degree 20 around 0 for the function e^{x}. Get the program to evaluate this polynomial using Horner's method. Get your program to compare the value of this polynomial with the library function $\exp (x)$ for different values of and x.
(ii) Do the same for the function $\cos (x)$.

